← 返回彩色打印版集合

6.6 Solving Problems Involving Random Variables

求解涉及随机变量的问题

6.6.1 随机变量函数的反推 / Inverse Problems with Random Variable Functions

假设你有两个随机变量:变量 \(X\) 和变量 \(Y = g(X)\)。如果 \(g\) 是一一对应的,并且你知道 \(Y\) 的期望值和方差,那么就有可能推导出 \(X\) 的期望值和方差。

Suppose you have two random variables: a variable \(X\), and a variable \(Y = g(X)\). If \(g\) is one-to-one, and you know the mean and variance of \(Y\), then it is possible to deduce the mean and variance of \(X\).

例 6.6.1 / Example 6.6.1:

\(X\) 是一个离散随机变量。离散随机变量 \(Y\) 定义为 \(Y = \frac{X - 150}{50}\)。

\(X\) is a discrete random variable. The discrete random variable \(Y\) is defined as \(Y = \frac{X - 150}{50}\).

已知 \(\mathrm{E}(Y) = 5.1\) 和 \(\operatorname{Var}(Y) = 2.5\),求:

Given that \(\mathrm{E}(Y) = 5.1\) and \(\operatorname{Var}(Y) = 2.5\), find:

a) \(\mathrm{E}(X)\)

b) \(\operatorname{Var}(X)\)

解答 / Solution:

a) \(Y = \frac{X - 150}{50}\),所以 \(X = 50Y + 150\)。重新排列得到 \(X\) 用 \(Y\) 表示的表达式。

a) \(Y = \frac{X - 150}{50}\), so \(X = 50Y + 150\). Rearrange to get an expression for \(X\) in terms of \(Y\).

\[\mathrm{E}(X) = \mathrm{E}(50Y + 150) = 50\mathrm{E}(Y) + 150 = 50 \times 5.1 + 150 = 255 + 150 = 405\]

使用 \(X\) 用 \(Y\) 表示的表达式。

Use your expression for \(X\) in terms of \(Y\).

b) 记住加150不影响方差,并且要用 \(50^2\) 乘以 \(\operatorname{Var}(Y)\) 得到 \(\operatorname{Var}(X)\)。
b) Remember that the '+150' does not affect the variance, and that you have to multiply \(\operatorname{Var}(Y)\) by \(50^2\) to get \(\operatorname{Var}(X)\).

\[\operatorname{Var}(X) = \operatorname{Var}(50Y + 150) = 50^2 \operatorname{Var}(Y) = 2500 \times 2.5 = 6250\]

6.6.2 关键要点总结 / Key Points Summary

随机变量函数反推的关键方法:

Key Methods for Inverse Problems with Random Variable Functions:

  1. 函数反解:将 \(Y = g(X)\) 反解为 \(X = h(Y)\)。Function inversion: Solve \(Y = g(X)\) for \(X = h(Y)\).
  2. 期望值反推:\(\mathrm{E}(X) = \mathrm{E}(h(Y))\)。Expected value inversion: \(\mathrm{E}(X) = \mathrm{E}(h(Y))\).
  3. 方差反推:对于线性函数,\(\operatorname{Var}(X) = \frac{\operatorname{Var}(Y)}{a^2}\)。Variance inversion: For linear functions, \(\operatorname{Var}(X) = \frac{\operatorname{Var}(Y)}{a^2}\).
  4. 一一对应性:函数 \(g\) 必须是一一对应的。Bijectivity: Function \(g\) must be one-to-one.

重要提醒 / Important Note:

证明 \(\mathrm{E}[(X - \mathrm{E}(X))^2] = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2\) 和 \(\mathrm{E}(X + Y) = \mathrm{E}(X) + \mathrm{E}(Y)\)。

Show that \(\mathrm{E}[(X - \mathrm{E}(X))^2] = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2\) and \(\mathrm{E}(X + Y) = \mathrm{E}(X) + \mathrm{E}(Y)\).